Ничто не стоит на месте – все развивается, в том числе и системы питания автомобилей. Чтобы улучшить все технические показатели двигателя, необходимо добиться более точного дозирования топлива в зависимости от режима работы, также необходимо для более полного сгорания значительно тщательнее смешивать бензин с воздухом, а этого можно достичь только при распылении топлива. Добиться этого удалось путем установки вместо карбюратора сначала моновпрыска, затем распределенного и, как апогей, – непосредственного впрыска топлива. Рассмотрим все этапы развития систем питания более подробно.
Моновпрыск
Первая часть слова происходит от греческого «monos», что означает «один». В этой системе просто взяли и вместо карбюратора установили похожий механизм, отличающийся тем, что топливо распылялось не за счет разрежения, а впрыскивалось одной единственной форсункой (пример системы питания с моновпрыском приведен на рисунке 4.51). Управление процессом впрыска возложили на электронику, добившись точного дозирования топлива при его впрыске.
Простота системы с моновпрыском — основной козырь в игре против карбюратора. Низкое давление впрыска (0,5—1,0 бар) позволило использовать обычный электрический топливный насос, а управление с помощью электронного блока управления (ЭБУ) дало возможность постоянно контролировать количество впрыскиваемого топлива для сохранения стехиометричности топливной смеси.
Примечание
Стехиометричность для топливовоздушной смеси — это определённое соотношение топлива и воздуха, при котором происходит полное сгорание данного топлива. Для бензина это соотношение равно 1 : 14,7, то есть для полного сгорания одного килограмма бензина требуется почти 15 килограмм воздуха.
Для управления всей системой используют несколько датчиков:
- датчик положения дроссельной заслонки (угла ее открытия);
- датчик положения коленчатого вала и его частоты вращения;
- датчик положения распределительного вала;
- датчик избытка кислорода (другое название — «лямбда-зонд»);
- также установлен регулятор давления, контролирующий давление впрыска топлива.
Получив данные от всех этих датчиков, ЭБУ посылает сигнал на топливную форсунку, которая впрыскивает ровно столько топлива, сколько необходимо в данный момент времени.

Рисунок 4.51 Пример устройства системы питания бензинового двигателя с моновпрыском.
Излишки топлива сливаются через возвратную магистраль обратно в топливный бак.
Впрыскивание топлива синхронизировано с распределителем зажигания (трамблером).
Распределенный и непосредственный впрыск
Для реализации этой системы взяли и вместо одной общей форсунки установили по одной форсунке на каждый цилиндр (оптимизировав тем самым работу двигателя). Для более качественного распыления топлива, чтобы перемешивание с воздухом было более тщательным – повысили давление впрыска. Такие требования возникли из-за того, что форсунки устанавливаются во впускной коллектор после дроссельной заслонки и направлены на впускные клапаны. Схема распределенного впрыска топлива представлена на рисунке 4.52.

Рисунок 4.52 Схема распределенного впрыска топлива.
«Основной состав» датчиков остался прежним (относительно моновпрыска):
- датчик положения дроссельной заслонки (угла ее открытия);
- датчик положения коленчатого вала и его частоты вращения;
- датчик положения распределительного вала;
- датчик избытка кислорода (в быту «лямбда-зонд»);
- также установлен регулятор давления, контролирующий давление впрыска топлива.
Примечание
Регулятор «переехал» с корпуса форсунки на топливную рампу системы питания.
Кроме того, появились и новые датчики, собирающие данные о работе двигателя:
- датчик массового расхода воздуха;
- датчик температуры охлаждающей жидкости;
- датчик детонации;
- датчик напряжения в бортовой сети;
- датчик скорости автомобиля;
- датчик температуры впускного воздуха;
- датчик давления во впускном коллекторе.

Рисунок 4.53 Принципиальная схема системы управления двигателя с распределенным впрыском топлива.
1 – диагностический разъем; 2 – щиток приборов; 3 – датчик иммобилайзера; 4 – электронный блок управления иммобилайзером; 5 – реле включения электровентилятора; 6 – электровентилятор системы охлаждения; 7 – электронный блок управления двигателем; 8 – корпус воздушного фильтра в сборе; 9 – датчик массового расхода воздуха; 10 – дроссельная заслонка в сборе; 11 – датчик положения дроссельной заслонки; 12 – регулятор холостого хода; 13 – топливная форсунка; 14 – свеча зажигания; 15 – модуль зажигания; 16 – датчик температуры охлаждающей жидкости; 17 – датчик детонации; 18 – АКБ (аккумуляторная батарея); 19 – замок зажигания; 20 – главное реле; 21 – датчик концентрации кислорода (лямбдазонд); 22 – датчик скорости; 23 – датчик положения коленчатого вала; 24 – топливный фильтр; 25 – реле топливного насоса; 26 – топливный насос в сборе с датчиком уровня топлива; 27 – топливный бак; 28 – сепаратор; 29 – предохранительный клапан; 30 – гравитационный клапан; 31 – обратный клапан; 32 – адсорбер; 33 – клапан продувки адсорбера.
Водитель, нажимая на педаль акселератора, открывает дроссельную заслонку, и в систему впуска начинает поступать большее количество воздуха. Электронный блок управления, собирая данные от всех датчиков, подает команду на топливные форсунки, определяя тем самым количество впрыскиваемого топлива, а в современных двигателях еще интенсивность и число циклов за один впрыск топлива. Благодаря этому улучшились показатели расхода топлива, мощности и крутящего момента.
Примечание
Дроссельная заслонка может приводиться либо тросом непосредственно от педали акселератора, либо посредством электроники. В таком случае на педали акселератора устанавливается датчик ее положения, а на дроссельной заслонке — шаговый электродвигатель, который поворачивается на угол, соответствующий перемещению педали «газа» на определенное расстояние.
Однако на пути к идеальной оптимизации работы двигателя внутреннего сгорания все же стоял впускной клапан – дополнительное сопротивление на пути топливовоздушной смеси. Чтобы получить желаемые характеристики ДВС, впрыскивать топливо решили непосредственно в цилиндр. Перед конструкторами встал острый вопрос, как это реализовать, поскольку топливо, впрыскиваемое на клапаны при распределенном впрыске, успевало тщательно перемешаться с воздухом, чего не было при непосредственном впрыске. Выход из положения нашли в сложной форме поршня, а точнее его днища. На первых порах ничего хорошего не выходило. Однако в последние годы разработчики двигателей добились больших успехов в конструировании бензиновых двигателей с непосредственным впрыском топлива. Им удалось получить низкий расход топлива, высокую мощность и стабильно большой крутящий момент, однако наряду с этим повысились и требования к качеству топлива. Последний момент стал сдерживающим фактором развития данной технологии в странах СНГ.
В системе непосредственного впрыска топлива используются те же датчики, что и в системе распределенного впрыска. Отличие состоит в топливных форсунках, которые должны выдерживать более высокие рабочие температуры, давление и ударные нагрузки. Точность дозирования топлива в данных форсунках чуть ли не на порядок выше, чем в инжекторах распределенного впрыска.
Примечание
Стоит вспомнить, что попытки создания бензинового двигателя с непосредственным впрыском топлива предпринимались не раз. Самым ярким обладателем такого двигателя в истории является Mercedes 500 SL 1954 года выпуска. Система непосредственного впрыска обеспечивала отличные характеристики мощности и крутящего момента при сносном расходе топлива. Однако впрыск был механическим, все детали приходилось прецизионно обрабатывать, вследствие этого они были очень дорогими ввиду технологического уровня, который был 60 лет назад.